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INTRODUCTION 

In the first talk of the session, Dr Peter Basser will have introduced the theory of diffusion in 
biological systems and shown how, in tissue with ordered structure on the length scale of the 
measurement volume (i.e., voxel), diffusion appears anisotropic.  In such cases, the diffusion 
properties cannot be fully characterized by a scalar value. The next most complex model of diffusion 
is the diffusion tensor – a  3 x 3 symmetrical positive definite matrix.  In this presentation, we will 
focus on how the diffusion is estimated and how quantitative parameters are derived from the tensor, 
with focus on obtaining robust values.  Pitfalls, artefacts and their remediation will be covered in the 
talk by Dr Carlo Pierpaoli, while sequences will be covered by Dr Jim Pipe. 

 
The Basics 
 
Diffusion Weighted MR: In essence, the diffusion sensitivity of most MR pulse sequences 
can be increased by adding a pair of pulsed magnetic field gradients into the sequence. The 
effect of the gradients is to introduce a spatially dependent phase accumulation. The sequence 
is designed so that, for a stationary spin, the phase accumulation due to the first gradient is 
matched in amplitude but reversed in sign to the phase accumulation due to the second 
gradient. The result is that for stationary spins, the net phase change is zero.  For spins that 
move during the experiment (i.e., diffusing water molecules), the phase accumulations due to 
the 1st and 2nd gradients are not matched in amplitude – resulting in a net phase change.  As 
diffusion is a random walk, the motion of spins is incoherent within the voxel – which results 
in a distribution of phases – resulting in a loss of phase coherence and signal attenuation.  The 
amount of diffusion weighting will depend on the strength of the encoding gradients (i.e., how 
strongly the phase accumulation depends on spatial location), and on the duration of the 
experiment (i.e., for how long diffusional motion and phase dispersion is allowed to occur).  
These parameters are summarised into a single number called the ‘b-factor’. For a simple pair 
of pulsed gradients, the b-factor is given by the so-called Stejskal-Tanner expression: 
 
 







 −∆=

3
222 δδγ Gb , 

[1]

where γ is the gyromagnetic ratio, G is the gradient amplitude, and δ and ∆ are the temporal 
duration and separation of the diffusion-encoding gradients, respectively.  
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Diffusion Weighted Signal in Isotropic Media: 
 For isotropic media, the signal attenuation is written as: 
 ( )bDII −= exp0 , [2]
where I and I0 are the diffusion-weighted and non-diffusion-weighted intensities, respectively, 
b is the b-factor and D is the scalar apparent diffusion coefficient. It should be clear that by 
acquiring an additional image with no diffusion weighting (i.e. I0), and with knowledge of the 
b-factor, it is possible to estimate the diffusion coefficient directly. 
 
Diffusion-Weighted Signal in Anisotropic Media 
As discussed in the talks by Drs Basser and Beaulieu, diffusion in anisotropic systems is more 
completely characterized by a tensor matrix. In such situations, Eq. [1] has to be re-written by 
replacing the scalar b-factor with a b-matrix, whose elements bij, scale the attenuation of the 
signal by the corresponding elements of the diffusion tensor, Dij...Thus, Eq. [1] becomes: 
 ( )yzyzxzxzxyxyzzzzyyyyxxxx DbDbDbDbDbDbII 222exp0 −−−−−−= , [3]
For a detailed description of the computation of the b-matrix the interested reader is referred 
to Mattiello et al. (1994), but the key point is that the elements of the b-matrix can be varied 
by changing the direction of the diffusion encoding gradient. If the ith encoding gradient has 
components, [ ]i
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Estimating the Diffusion Tensor 
In linear algebra, when one has n unknowns, one needs a set of n simultaneous equations to 
be able to solve for those unknowns.  Since the diffusion tensor is a 3 x 3 symmetrical matrix, 
it contains just six unique elements – or six ‘unknowns’. Therefore, to estimate the diffusion 
tensor, it is sufficient to obtain a set of six simultaneous linear equations, containing the 
elements, to estimate the full tensor. To obtain a linear equation, a logarithmic transform of 
each side of Eq. [2] is performed. To set up simultaneous equations, the direction of the 
applied encoding gradients is varied –  in at least six non-collinear and non-coplanar 
directions. If only six measurements are made, then the tensor can be found by simple matrix 
inversion and the solution is exact.  
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then we can write BDS = , which is readily solved for D, i.e., D = B-1S. (It is straightforward 
to find the inverse of B in this case, since it is a square matrix). 
 
In the example just given, the model fits the data points exactly and therefore includes the 
noise contamination of the data. Unless scanning in the absolute minimum time possible, then 
this is far from ideal – and more samples of the diffusion-weighted signal should be obtained. 
The tensor is then estimated using regression. There are two main approaches: The first is to 
use non-linear optimization routines (e.g. Levenberg-Marquardt) to estimate the elements of 
the tensor directly from the diffusion-weighted signals, which are expressed as in Eq. [3]. 
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This has the advantage that the errors in the signals are homoscedastic. However, non-linear 
fitting routines: (a) generally require an initial estimate; (b) Require the operator to choose a 
convergence limit; (c) Often take a long time to converge; (d) Are prone to local minima.  On 
the basis of these limitations, the linear multivariate regression approach (Basser et al. 1994) 
is favoured.  With more than six measurements, the matrix B above is no longer square, and 
so we have to compute the pseudo-inverse. Further, the logarithmic transformation of the data 
introduces heteroscedasticity in the errors. Each data point should therefore be correctly 
weighted to account for this, i.e. by introducing a covariance matrix: Σ-1, whose diagonal 
elements are the variances in the log-transformed data. To a first order approximation, this 
can be expressed as  

222
ln iI I

i
σσ = . The solution is therefore: 

 ( ) SBBBD 111 −−− ΣΣ= T  [5]

The diagonal elements of the first term in Eq. [5], ( ) 11 −− BΣBT , represent the predicted error variances 
of the estimated parameters. Under the assumption that Σ-1= kI (where k is a constant, and I is the 
identity matrix), this precision matrix is determined by the elements of B – which are under 
the experimenter’s control. Further, Skare et al. (2000) showed, from Eq. [5], that the relative 
errors in the tensor matrix can be expressed in terms of the errors in the measurements, via the 
following expression 
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[6]

 
where cond(B) is the condition number of the matrix B, i.e. 
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λ
λ

cond , 
[7]

where λ corresponds to the eigenvalues of the matrix in parentheses. It should be clear from Eq. [4] 
and Eq. [7] that for a fixed trace of the b-matrix, that the condition number will be solely dependent on 
the choice of gradient directions – which is something the operator has control over. 
 
The conclusion is that the set of gradient directions chosen affects the errors in the estimated tensor 
elements.  Skare et al. (2000) took the observation in Eq. [6] and used numerical optimization to find a 
set of gradient orientations that minimized the condition number. However, they found that results 
obtained with these schemes did not perform as well as schemes in which gradient encoding 
orientations were uniformly distributed in space (Jones et al. 1999).  The reason for this was not 
immediately clear until Batchelor and colleagues (2003) showed that, for certain sampling schemes, 
the condition number depends on the relative orientation with respect to the laboratory frame of 
reference. In other words, the condition number is rotationally invariant.  They did show, however, 
that schemes in which gradients are distributed as uniformly as possible in space (e.g., by pointing to 
the faces of an icosahedron), have rotationally invariant condition numbers.  This introduces the 
concept of statistical rotational invariance – which means that the statistical properties of the tensor 
(e.g., variance / precision), will be independent of the orientation of the tensor.  
A further observation made by both Skare et al. (2000) and Batchelor et al. (2003) is that, out of two 
schemes which have the same condition number but different numbers of unique  gradient 
orientations, the scheme with more unique sampling orientations will outperform (in terms of 
statistical rotational invariance) the scheme with fewer directions.  Jones (2004) systematically 
examined the effect of increasing the number of unique sampling orientations on statistical properties 
of the tensor and found that there is a clear advantage to using more than six directions – but that there 
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are diminishing returns after approximately 20 unique directions.  There is ongoing debate, however, 
about optimal sampling orientations in the literature. 
 
 
Parameters Derived From DT-MRI 

There are three main parameters derived from DT-MRI:  (a) Trace or Mean 
diffusivity; (b) Anisotropy; (c) Fibre Orientation. The first two can be computed from the 
eigenvalues and the latter from the eigenvectors.  

 
Trace: Without doubt, the most clinically useful measure obtained from diffusion 

tensor imaging is the Trace.  This is the sum of the three diagonal elements of the diffusion 
tensor (i.e. Dxx + Dyy + Dzz).  The Trace/3 can be thought of as being equal to the 
orientationally averaged mean diffusivity.  Note that, particularly in the earlier diffusion MRI 
literature, many alternative phrases have been used to describe this measure, including trace 
ADC and mean trace ADC. These terms are nonsensical since the trace is a property of 
tensors, while an ADC is a scalar quantity; the use of such terms should therefore be avoided.  
A remarkable property of the trace is that, in the range of diffusion weightings typically used 
in clinical studies ( < 1000 s mm-2), the mean diffusivity is fairly uniform throughout 
parenchyma (0.7 × 10–3 mm2 s-1). Although homogeneity makes it difficult to distinguish 
anatomical structures, it does offer the advantage that the effects of anisotropy do not 
confound detection of diffusion abnormalities, such as acute ischemic. 

 
Anisotropy: Prior to the introduction of the tensor model into MRI by Basser et al., 

several indices for diffusivity were proposed, such as the ratio of ADCs obtained in two 
orthogonal directions. The limitation of such indices can be understood by imagining a set of 
fibers oriented at 45° to the x- and y-axes, the ratio ADCy/ADCx is equal to unity, for the fibers 
oriented along the y-axis, the ratio ADCy/ADCx takes its maximal value, and for the fibers 
oriented along the x-axis, the ratio takes its minimal value.  As this measure depends on the 
orientation of the tissue with respect to the laboratory frame of reference, it is said to be 
rotationally variant.  
 
Anisotropy indices formed from the eigenvalues of the tensor will, by definition, be 
rotationally invariant.  The simplest anisotropy index, analogous to the ratio ADCy/ADCx 
would be the ratio of the largest to the smallest eigenvalue (i.e. λ1/λ3).  However, as discussed 
later, it has been shown that sorting the eigenvalues according to their magnitude introduces a 
bias in the measurements at low signal-to-noise ratios (Pierpaoli et al. 1996).  To circumvent 
this problem, indices that do not require sorting (Basser and Pierpaoli 1996; Pierpaoli and 
Basser 1996) have been proposed and have been shown to be less sensitive to the signal-to-
noise ratio. The two most popular are the fractional anisotropy (FA) and relative anisotropy 
(RA), given by  
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where  
 ( )3213

1 λλλλ ++= . 
[10]

The numerator for both terms is the same and is related to the variance of the three 
eigenvalues about their mean.   The fractional anisotropy index normalizes this measure by 
the magnitude of the tensor as a whole.  Just as the magnitude of a vector can be found from 
the sum of the squares of its individual components, the magnitude of the tensor is found from 
the sum of the squares of its eigenvalues.  Thus, fractional anisotropy measures the fraction of 
the tensor that can be assigned to anisotropic diffusion. The fractional anisotropy index is 
appropriately normalized so that it takes values from zero (when diffusion is isotropic) to one 
(when diffusion is constrained along one axis only).   The denominator of the relative 
anisotropy index is simply the mean diffusivity.  This index is mathematically identical to a 
coefficient of variation, i.e. standard deviation divided by the mean.  To ensure that this index 
scales from zero to one, Shimony et al. (1999) divided the relative anisotropy index by 2 , 
and renamed the index Aσ, i.e. 
 

2
RAA =σ , [11]

 
It should be noted that even though measures such as fractional anisotropy and relative 
anisotropy are less sensitive to noise than measures such as λ1/λ3, they are nevertheless 
sensitive to noise.  As the signal-to-noise ratio is lowered, the anisotropy indices become 
increasingly overestimated (Pierpaoli et al. 1996). Thus comparisons of anisotropy indices 
obtained from different studies in which different imaging parameters have been used should 
be treated with caution.  
 
Tensor Orientation: By finding the direction in which the motion of diffusing molecules is 
least hindered within each voxel, (given by the eigenvector associated with the largest 
eigenvalue), one can infer the dominant fiber orientation. By viewing fiber orientation in one 
voxel and following, by eye, a path of smooth transition in orientation from one voxel to the 
next, one can gain an impression of the trajectory of the major white matter pathways. This 
will be covered in detail in the lecture by Dr Andy Alexander. 
 
 
Minimal Encoding Schemes  
Given the three measures (trace, anisotropy and fiber orientation), it is interesting to pose the question  
whether one needs to collect all the data to estimate the tensor, if only one aspect is required.  In terms 
of estimating the trace,  (Dxx + Dyy + Dzz) , it should be clear from Eq. [3] that if the pulse-sequence 
can be designed such  that  
 
 bbbbbbb zzyyxxxzyzxy ====== &0 , [12]
then the signal attenuation in Eq. [3] can be written as: 
 ( )( )zzyyxx DDDbII ++−= exp0 , [13]
 
Mori et al. (1995) and Wong et al. (1995) independently proposed schemes in which diffusion-
encoding gradients were arranged on all three axes to satisfy the conditions given in Eq. [12], thereby 
producing a trace-weighted image, or (with just one additional image), a trace map very rapidly.  
Shrager and Basser (1998) addressed the question of how many diffusion-weighted images would be 
required to encode diffusion anisotropy. It can be shown that the minimum number if six – which, as 
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discussed above, is the minimum number required to estimate the tensor. Similar arguments can no 
doubt be applied to estimates of fiber orientation (i.e. one needs to estimate the diffusion tensor). 
 
 
Further issues on optimisation (b-values, number of measurements made at each b-value, etc. etc.) will 
be discussed if time permits. 
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